Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Insect Sci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562016

RESUMO

Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.

2.
J Virol ; : e0031724, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624231

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.

3.
Transl Oncol ; 45: 101967, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653100

RESUMO

BACKGROUND: Persistent pancreaticobiliary reflux (PBR) is associated with a high risk of biliary malignancy. This study aimed to evaluate the proportion of PBR in biliary tract diseases and mechanisms by which PBR promoted cholangiocarcinoma progression. METHODS: Overall 227 consecutive patients with primary biliary tract disease participated in this study. The amylase levels in the collected bile were analyzed. The mechanisms underlying the effect of high-amylase bile on bile duct epithelial and cholangiocarcinoma cells progression were analyzed. The source of interleukin-8 (IL-8) and its effects on the biological functions of cholangiocarcinoma cells were investigated. RESULTS: The bile amylase levels in 148 of 227 patients were higher than the upper serum amylase limit of 135 IU/L. PBR was significantly correlated with sex, pyrexia, and serum gamma-glutamyl transferase (GGT) levels in the patient cohort. High-amylase bile-induced DNA damage and genetic differences in the transcript levels of the gallbladder mucosa and facilitated the proliferation and migration of bile duct cancer cells (HUCCT1 and QBC939 cells). The concentration of many cytokines increased in high-amylase bile. IL-8 is secreted primarily by macrophages via the mitogen-activated protein kinase pathway and partially by bile duct epithelial cells. IL-8 promotes the progression of HUCCT1 and QBC939 cells by regulating the expression of epithelial-mesenchymal transition-associated proteins and activating the phosphatidylinositol 3-kinase/nuclear factor kappa-B pathway. CONCLUSIONS: PBR is one of the primary causes of biliary disease. IL-8 secreted by macrophages or bile duct epithelial cells stimulated by high-amylase bile promotes cholangiocarcinoma progression.

4.
Cancer Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657117

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors in humans, with liver metastasis being the primary cause of mortality. The epithelial-mesenchymal transition (EMT) process endows cancer cells with enhanced metastatic potential. To elucidate the cellular mechanisms driving EMT in CRC, we analyzed single-cell RNA-sequencing (scRNA-seq) data from 11 non-metastatic primary tumors (TnM) and 11 metastatic primary tumors (TM) from CRC patients. Compared to TnM group, the TM samples showed elevated numbers of malignant epithelial cell and cancer-associated fibroblast (CAF) subsets that displayed enrichments of EMT, angiogenesis, and TGF-ß signaling pathways. One specific TM-enriched subgroup of malignant epithelial cells underwent EMT to trans-differentiate into CXCL1+ CAFs that subsequently differentiated into SFRP2+ CAFs, which was validated by spatial transcriptomic and pseudotime trajectory analyses. Furthermore, cell-cell communication analysis identified BHLHE40 as a probable key transcription factor driving EMT that was associated with poor prognosis. Finally, in vitro and in vivo experiments functionally substantiated that BHLHE40 promoted the proliferation, invasion, migration, EMT, and liver metastasis of CRC cells. In summary, this study identified BHLHE40 as a key transcription factor regulating EMT that promotes liver metastasis in CRC.

5.
BMC Musculoskelet Disord ; 25(1): 327, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658889

RESUMO

BACKGROUND: Congenital dislocation of the knee is characterised by excessive knee extension or dislocation and anterior subluxation of the proximal tibia, and this disease can occur independently or coexist with different systemic syndromes. Nevertheless, significant controversy surrounds treating this disease when combined with hip dislocation. This paper presents a case of a 4-month-old patient diagnosed with bilateral hip dislocation combined with this disease. The study discusses the pathophysiology, diagnosis, and treatment methods and reviews relevant literature. CASE PRESENTATION: We reported a case of a 4-month-old female infant with congenital dislocation of the right knee joint, which presented as flexion deformity since birth. Due to limitations in local medical conditions, she did not receive proper and effective diagnosis and treatment. Although the flexion deformity of her right knee joint partially improved without treatment, it did not fully recover to normal. When she was 4 months old, she came to our hospital for consultation, and we found that she also had congenital dislocation of both hip joints and atrial septal defect. We performed staged treatment for her, with the first stage involving surgical intervention and plaster orthosis for her congenital dislocation of the right knee joint, and the second stage involving closed reduction and plaster fixation orthosis for her congenital hip joint dislocation. Currently, the overall treatment outcome is satisfactory, and she is still under follow-up observation. CONCLUSIONS: Early initiation of treatment is generally advised, as nonsurgical methods prove satisfactory for mild cases. However, surgical intervention should be considered in cases with severe stiffness, unresponsive outcomes to conservative treatment, persistent deformities, or diagnoses and treatments occurring beyond the first month after birth.


Assuntos
Luxação Congênita de Quadril , Luxação do Joelho , Humanos , Feminino , Luxação do Joelho/complicações , Luxação do Joelho/congênito , Luxação do Joelho/terapia , Luxação do Joelho/diagnóstico por imagem , Luxação do Joelho/cirurgia , Luxação do Joelho/diagnóstico , Luxação Congênita de Quadril/complicações , Luxação Congênita de Quadril/terapia , Luxação Congênita de Quadril/diagnóstico , Lactente , Resultado do Tratamento , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiopatologia , Moldes Cirúrgicos
6.
Ecol Evol ; 14(4): e11284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651164

RESUMO

In heterostylous plants, short-tongued pollinators are often ineffective/inefficient owing to the limitations imposed by a long corolla tube. However, it is unclear how disassortative pollen transfer is achieved in small flowers. We investigated the pollination pattern and floral morph variation by analyzing heterostylous syndrome, pollinator groups, and pollen deposition after a single visitation in two Limonium myrianthum populations with short-corolla-tubular small flowers. The predominant pollinators in the Hutubi population were pollen-seeking short-tongued syrphids, which can only transfer pollen between high-level sexual organs. In the Xishan population, nectar-seeking short-tongued insects were efficient pollinators with symmetrical disassortative pollen transfer between high- and low-level sexual organs, whereas long-tongued pollinators had a low efficiency between high-level sexual organs due to the low contact probability with the stigma of long-styled flowers (L-morph), which no longer offered the same advantage observed in tubular flowers. Asymmetrical disassortative pollination may cause the female fitness of short-styled (S-morph) individuals in the Hutubi and L-morph individuals in the Xishan population to suffer greater selection pressure and exhibit a higher degree of floral morph variation. Limonium myrianthum exhibits an unusual pollination pattern in which the small flowers with short corolla tubes make it possible for short-tongued insects to become effective pollinators. However, factors such as the position of stigma-anther within the flower, pollinator species and their preference further caused asymmetrical disassortative pollen transfer. Therefore, more factors should be considered when evaluating the effectiveness of short- and long-tongued insects in pollination service.

7.
Chem Biodivers ; : e202400524, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634793

RESUMO

Baihe is a commonly used Chinese medicine for the treatment of neurological disorders. Clinically, the bulbs of Lilium brownii are used to act as Baihe. In the study, two new phenylpropanoid compounds including 3-O-acetyl-1-O-caffeoylglycerol (1) and 3-O-acetyl-1-O-p-coumaroylglycerol (2) were isolated from the bulbs of L. brownii. Their structures were identified by spectroscopic method and the effect on monoamine oxidase activity was determined using an enzyme labeling method. The results show 1 and 2 have anti-monoamine oxidase activity with 20.96% and 22.31% inhibition rates at 50 µg/ml, respectively.

8.
Water Res ; 256: 121571, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38583332

RESUMO

'Candidatus Methanoperedens nitroreducens' is an archaeal methanotroph with global importance that links carbon and nitrogen cycles and great potential for sustainable operation of wastewater treatment. It has been reported to mediate the anaerobic oxidation of methane through a reverse methanogenesis pathway while reducing nitrate to nitrite. Here, we demonstrate that 'Ca. M. nitroreducens' reduces ferric iron forming ammonium (23.1 %) and nitrous oxide (N2O, 46.5 %) from nitrate. These results are supported with the upregulation of genes coding for proteins responsible for dissimilatory nitrate reduction to ammonium (nrfA), N2O formation (norV, cyt P460), and multiple multiheme c-type cytochromes for ferric iron reduction. Concomitantly, an increase in the N2O-reducing SJA-28 lineage and a decrease in the nitrite-reducing 'Candidatus Methylomirabilis oxyfera' are consistent with the changes in 'Ca. M. nitroreducens' end products. These findings demonstrate the highly flexible physiology of 'Ca. M. nitroreducens' in anaerobic ecosystems with diverse electron acceptor conditions, and further reveals its roles in linking methane oxidation to global biogeochemical cycles. 'Ca. M. nitroreducens' could significantly affect the bioavailability of nitrogen sources as well as the emission of greenhouse gas in natural ecosystems and wastewater treatment plants.

9.
Nat Commun ; 15(1): 2705, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538616

RESUMO

Strong field ionization injects a transient vacancy in the atom which is entangled to the outgoing photoelectron. When the electron is finally detached, the ion is populated at different excited states with part of coherence information lost. The preserved coherence of matter after interacting with intense short pulses has important consequences on the subsequent nonequilibrium evolution and energy relaxation. Here we employ attosecond transient absorption spectroscopy to measure the time-delay of resonant transitions of krypton vacancy during their creation. We have observed that the absorptions by the two spin-orbit split states are modulated at different paces when varying the time-delay between the near-infrared pumping pulse and the attosecond probing pulse. It is shown that the coupling of the ions with the remaining field leads to a suppression of ionic coherence. Comparison between theory and experiments uncovers that coherent Raman coupling induces time-delay between the resonant absorptions, which provides insight into laser-ion interactions enriching attosecond chronoscopy.

10.
Materials (Basel) ; 17(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541396

RESUMO

To enhance the performance of ultra-high voltage power fittings in severe weather conditions without altering their current structure, the high-strength and toughness aluminum alloys were rationally selected to study the optimization of the die-casting process. This approach aims to improve the overall longevity and function of the power fittings in extreme climates. First of all, the propose of this study is to use the material's strength-toughness product (STP) concept to evaluate the material stability of the power fitting impact resistance and fatigue toughness in order to determine the appropriate material selection. Secondly, the location of the mold's sprue and gate was optimized through finite element simulation to prevent gas volume and flow defects during the casting process. This improves the material's toughness and anti-fatigue failure characteristics of the product. Then, vacuum equipment and a vacuum valve auxiliary system were added based on the existing die-casting machine, and the mold structure was optimized to enable the vacuum die-casting process. Finally, a water-based boron nitride environmentally friendly mold release agent was used to solve demolding difficulties with an A356 aluminum alloy and improve mold lubrication and surface quality. The production of quad-bundled spacers using A356 and vacuum die casting has resulted in parts with a tensile strength of at least 250 MPa and an elongation of no less than 7%. This improvement has laid a foundation for enhancing the operational reliability of existing overhead transmission line fittings.

11.
Environ Res ; 252(Pt 1): 118810, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552829

RESUMO

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.

12.
Int Immunopharmacol ; 131: 111911, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527401

RESUMO

BACKGROUND: Acute lung injury (ALI) has garnered significant attention in the field of respiratory and critical care due to its high mortality and morbidity, and limited treatment options. The role of the endothelial barrier in the development of ALI is crucial. Several bacterial pathogenic factors, including the bacteria-derived formyl peptide (fMLP), have been implicated in damaging the endothelial barrier and initiating ALI. However, the mechanism by which fMLP causes ALI remains unclear. In this study, we aim to explore the mechanisms of ALI caused by fMLP and evaluate the protective effects of MOTS-c, a mitochondrial-derived peptide. METHODS: We established a rat model of ALI and a human pulmonary microvascular endothelial cell (HPMVEC) model of ALI by treatment with fMLP. In vivo experiments involved lung histopathology assays, assessments of inflammatory and oxidative stress factors, and measurements of ferroptosis-related proteins and barrier proteins to evaluate the severity of fMLP-induced ALI and the type of tissue damage in rats. In vitro experiments included evaluations of fMLP-induced damage on HPMVEC using cell activity assays, assessments of inflammatory and oxidative stress factors, measurements of ferroptosis-related proteins, endothelial barrier function assays, and examination of the key role of FPR2 in fMLP-induced ALI. We also assessed the protective effect of MOTS-c and investigated its mechanism on the fMLP-induced ALI in vivo and in vitro. RESULTS: Results from both in vitro and in vivo experiments demonstrate that fMLP promotes the expression of inflammatory and oxidative stress factors, activates ferroptosis and disrupts the vascular endothelial barrier, ultimately contributing to the development and progression of ALI. Mechanistically, ferroptosis mediated by FPR2 plays a key role in fMLP-induced injury, and the Nrf2 and MAPK pathways are involved in this process. Knockdown of FPR2 and inhibition of ferroptosis can attenuate ALI induced by fMLP. Moreover, MOTS-c could protect the vascular endothelial barrier function by inhibiting ferroptosis and suppressing the expression of inflammatory and oxidative stress factors through Nrf2 and MAPK pathways, thereby alleviating fMLP-induced ALI. CONCLUSION: Overall, fMLP disrupts the vascular endothelial barrier through FPR2-mediated ferroptosis, leading to the development and progression of ALI. MOTS-c demonstrates potential as a protective treatment against ALI by alleviating the damage induced by fMLP.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Humanos , Animais , Ratos , Fator 2 Relacionado a NF-E2 , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Mitocôndrias , Lipopolissacarídeos , Receptores de Formil Peptídeo , Receptores de Lipoxinas
13.
PLoS One ; 19(3): e0300781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512872

RESUMO

The allocation of assets across different markets is a crucial element of investment strategy. In this regard, stocks and bonds are two significant assets that form the backbone of multi-asset allocation. Among publicly offered funds (The publicly offered funds in China correspond to the mutual funds in the United States, with different names and details in terms of legal form and sales channels), the stock-bond hybrid fund gives investors a return while minimizing the risk through capital flow between the stock and bond markets. Our research on China's financial market data from 2006 to 2022 reveals a cross-asset momentum between the stock and bond markets. We find that the momentum in the stock market negatively influences the bond market's return, while the momentum in the bond market positively influences the stock market's return. Portfolios that exploit cross-asset momentum have excess returns that other asset pricing factors cannot explain. Our analysis reveals that hybrid funds play an intermediary role in the transmission mechanism of cross-asset momentum. We observe that the more flexible the asset allocation ratio of the fund, the more crucial the intermediary role played by the fund. Hence, encouraging the development of hybrid funds and relaxing restrictions on asset allocation ratios could improve liquidity and pricing efficiency. These findings have significant implications for investors seeking to optimize their asset allocation across different markets and for policymakers seeking to enhance the efficiency of China's financial market.


Assuntos
Administração Financeira , Estados Unidos , Investimentos em Saúde , Comércio , China , Custos e Análise de Custo
14.
Water Res ; 255: 121498, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522398

RESUMO

Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.

15.
ACS Omega ; 9(9): 9991-9999, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463257

RESUMO

Biomass smoldering for rural building heating could be a potential choice for bioenergy utilization in China to reduce the pollution caused by agroresidues open burning and to satisfy the increased demand of rural building heating. Its strengths include low pretreatment, transportation, and storage fees of fuel; ease of operation; good fertilizer characteristics of ash; use of latent heat of water vapor; pollution reduction; reduction of pests, weeds, and plant diseases on the farm; etc. However, controls of the burn rate and the gas emission are two challenges of the application, and related solutions of these challenges are discussed.

16.
J Hepatol ; 80(2): 194-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38438948

RESUMO

BACKGROUND & AIMS: Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS: Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS: We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS: Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS: Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Apoptose , Concanavalina A , Modelos Animais de Doenças , Hepatócitos , Inflamação
17.
Front Biosci (Landmark Ed) ; 29(3): 120, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538251

RESUMO

BACKGROUND: Osteosarcoma cells are prone to metastasis, and the mechanism of N6-methyladenosine (m6A) methylation modification in this process is still unclear. Methylation modification of m6A plays an important role in the development of osteosarcoma, which is mainly due to abnormal expression of enzymes related to methylation modification of m6A, which in turn leads to changes in the methylation level of downstream target genes messenger RNA (mRNA) leading to tumor development. METHODS: We analyzed the expression levels of m6A methylation modification-related enzyme genes in GSE12865 whole-genome sequencing data. And we used shRNA (short hairpin RNA) lentiviral interference to interfere with METTL3 (Methyltransferase 3) expression in osteosarcoma cells. We studied the cytological function of METTL3 by Cell Counting Kit-8 (CCK8), flow cytometry, migration and other experiments, and the molecular mechanism of METTL3 by RIP (RNA binding protein immunoprecipitation), Western blot and other experiments. RESULTS: We found that METTL3 is abnormally highly expressed in osteosarcoma and interferes with METTL3 expression in osteosarcoma cells to inhibit metastasis, proliferation, and apoptosis of osteosarcoma cells. We subsequently found that METTL3 binds to the mRNA of CBX4 (chromobox homolog 4), a very important regulatory protein in osteosarcoma metastasis, and METTL3 regulates the mRNA and protein expression of CBX4. Further studies revealed that METTL3 inhibited metastasis of osteosarcoma cells by regulating CBX4. METTL3 has been found to be involved in osteosarcoma cells metastasis by CBX4 affecting the protein expression of matrix metalloproteinase 2 (MMP2), MMP9, E-Cadherin and N-Cadherin associated with osteosarcoma cells metastasis. CONCLUSIONS: These results suggest that the combined action of METTL3 and CBX4 plays an important role in the regulation of metastasis of osteosarcoma, and therefore, the METTL3-CBX4 axis pathway may be a new potential therapeutic target for osteosarcoma.


Assuntos
Adenina , Neoplasias Ósseas , Metaloproteinase 2 da Matriz , Osteossarcoma , Humanos , Adenina/análogos & derivados , Epigênese Genética , Ligases/genética , Metaloproteinase 2 da Matriz/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/secundário , Proteínas do Grupo Polycomb/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , Neoplasias Ósseas/patologia
18.
Biopreserv Biobank ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452333

RESUMO

Objective: Amniotic fluid (AF) plays a crucial role in diagnosing and predicting perinatal diseases, specifically preeclampsia (PE). Adequate preservation of AF samples is essential for advancing the development of PE-related biomarkers and understanding the disease's mechanisms. Materials and Methods: This study presents a method for preserving proteins in AF on a solid medium, specifically a nitrocellulose membrane, which is referred to as an AF membrane. Samples were collected from normotensive subjects and PE patients and treated with direct freezing and the AF membrane methods, respectively. Protein quality was assessed through sodium dodecyl sulfate-page and capillary electrophoresis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) with data-independent acquisition was employed for proteomic analysis. Bioinformatics analysis identified differentially expressed proteins and pathways distinguishing normotensive subjects from PE patients. Results: Comparison of the AF membrane method to the direct freezing method showed no significant impact on the protein content in the AF. The preservation methods employed did not result in evident protein differences or degradation in the AF obtained from both normotensive subjects and PE patients. Analysis based on Gene Ontology and HALLMARK gene sets revealed the upregulation of pathways associated with angiotensin, reactive oxygen species, and coagulation in PE patients. Furthermore, several biomarkers previously reported to be increased in PE serum, namely ENG, ERN1, FLT1, GDF15, HSPA5, LGALS3, PAPPA, PTX3, and SERPINE1, were significantly elevated in the AF. Conclusion: The AF membrane method proved to be highly effective, reliable, and durable for preserving proteins in AF samples. Preserving AF samples in a solid state holds significant value in discovering novel protein biomarkers and investigating the underlying mechanisms of PE.

19.
FASEB J ; 38(5): e23525, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430373

RESUMO

CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.


Assuntos
Neoplasias Colorretais , Células T Matadoras Naturais , Humanos , Células Matadoras Naturais , Fator de Necrose Tumoral alfa/metabolismo , Fenótipo , Neoplasias Colorretais/patologia
20.
Adv Mater ; : e2313845, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452373

RESUMO

The resistance of gels and elastomers increases significantly with tensile strain, which reduces conductive stability and restricts their use in stable and reliable electronics. Here, highly conductive tough hydrogels composed of silver nanowires (AgNWs), liquid metal (LM), and poly(vinyl alcohol) (PVA) are fabricated. The stretch-induced orientations of AgNWs, deformable LM, and PVA nanocrystalline create conductive pathways, enhancing the mechanical properties of the hydrogels, including increased ultimate fracture stress (13-33 MPa), strain (3000-5300%), and toughness (390.9-765.1 MJ m-3 ). Notably, the electrical conductivity of the hydrogels is significantly improved from 4.05 × 10-3 to 24 S m-1 when stretched to 4200% strain, representing a 6000-fold enhancement. The incorporation of PVA nanocrystalline, deformable LM, and AgNWs effectively mitigates stress concentration at the crack tip, thereby conferring crack propagation insensitivity and fatigue resistance to the hydrogels. Moreover, the hydrogels are designed with a reversible crosslinking network, allowing for water-induced recycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...